A HYBRID ALGORITHM FOR SIZING AND LAYOUT OPTIMIZATION OF TRUSS STRUCTURES COMBINING DISCRETE PSO AND CONVEX APPROXIMATION
Authors
Abstract:
An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the results of MMA are used in IDPSO to optimize the cross-section areas. The results show that the hybrid of IDPSO and MMA can effectively accelerate the convergence rate and can quickly reach the optimum design.
similar resources
Hybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures
This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...
full textA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
full textModified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables
This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical function...
full textDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
full textSWITCHING TEAMS ALGORITHM FOR SIZING OPTIMIZATION OF TRUSS STRUCTURES
Meta-heuristics have received increasing attention in recent years. The present article introduces a novel method in such a class that distinguishes a number of artificial search agents called players within two teams. At each iteration, the active player concerns some other players in both teams to construct its special movements and to get more score. At the end of some iterations (like quart...
full textSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
full textMy Resources
Journal title
volume 3 issue 1
pages 57- 83
publication date 2013-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023